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ABSTRACT

Distortion of an electrical pulse,
with finite rise time (quadratic-linear-
quadratic transition) cau;ed by dispersion
as it propagates

of an
along a uniform

analysis of a square

microstripr a tapered
finite rise time, as it propagates along

microstrip and
a coupled pair of microstrips

au exponentially tapered and a pair of
is

investigated. Closed form analysis
uniform coupled microstrip lines.

m

@
equations for single and coupled
microstrips and an algorithm for numerical

THEORY

quadrature technique for evaluation of
The time domain

inverse Fourier transform have been used.
representation of

The results will be useful in the time
a pulse at a point z=L along a tapered

domain analysis of many circuit components
transmission line is given by:

where such microstrips are used.

a microstrip

the results
pulse, with

INTRODUCTION

MicroStrips are extensively used
in modern fast computers, phased array
antenna feeds and in planar distributed
line filters. The knowledge of time
domain analysis reveals many useful facts
regarding their frequency domain behavior
[1]. Alsor the design of MICS and NMICS
requires the knowledge of switching and
transient signal behavior in microstrips
and other planar transmission lines.

Dispersion of dc and RF pulses
in waveguides and other transmission
lines have been investigated [2]-[4].
Dispersion of an ideal square pulse and
Gaussian pulse have been studied [5],
[6]. However, the distortions of a square
Pulse with finite rise time, i.e., a
non
and
stud

infi

ideal square pulse in non-uniform
coupled microstrips have not been
ed.

A square pulse consists of an
ite number of pure

increasing frequencies
amplitudes. Since in a
phase velocity depends
different components of

sinusoids with
and decreasing

microstrip the
on frequency,

a square pulse
propagate at different phase velocities.
This results in the distortion of a square

V(t,L) =

where
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t is the time and

7’(w) = T(wJ) dti”” (2)

is the transfer function of the tapered
line, and

I
L

e(w) = ~ (W,Z) dz

o
(3)

is the total phase shift along the line
at a radian frequency ~ , and V(~,z=o)

is the Fourier transform of the pulse.
Obviously for a lossless uniform

microstrip
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The time domain representation of

a square pulse with finite rise time

(square-linear-square transition), shown

in Figure 1 is given by [7].
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The voltage transfer function of
a tapered transmission line can be written
as [8] (see Figure 2)

‘(w)= 11- :[’2F(’(~’)1’li=’&’”)
(1

(?)

Where F(Q (Q)) depends upon the taper
profile. As an example, for an
exponential ‘caper

()
(jSm 9(w)

F El(w) =
e ([u)

[8)

For a. pair of microstrip lines,
shown in Figure 3, the response to a
single signal in line 1 and no excitation
to line 2 is given by:

[
VI (t,z) = ; Ve(f,z) + vow

V,,(t,d = : V,(Q) - Vo(t,z)

(9a)

(9b)

where ~e(t, z) and Va(t,Z ), the
even and the odd mode time domain
excitations respectively, are obtained
by the above method described for a single
microstrip line.

In the above equations, the
propagation constants are computed by
using the accurate closed-form equations
[91, [101.

RESULTS

The distortion of a non ideal pulse
of width 250 ps traveling a distance
of L=25.4 mm along a tapered microstrip
with =10.5, h=O.635 mm is shown in
Figure 4 for various values of impedance
transformation ratios. It is apparent
that major distortion peaks along the
leading and the trailing edges of the
pulse have been created. Figure 4a
effectively shows the results for a

uniform microstrip line. Comparing the
present results with those of zero rise
time case in [5], it can be concluded
that the amplitudes of the distortion
peaks are dependent on the time lengths
of the quadratic and the linear regions
of the undistorted pulse.

Figure 5 shows the pulse response
of a coupled pair of uniform microstrip
lines. The even and the odd-mode pairs
of pulses add constructively on the signal
line and destructively on the sense line.

As signals first start out , the
even and the odd pairs separate from
each other due to their different phase
velocities. What has been shown in Figure
5 is the difference of the separated
signals in the sense line and the sum
in the signal line.
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FIGURE 2: Tapered Transmission Line
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FIGURE 3: Coupled Lines
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FIGURE 1: Square Pulse with Finite Rise Time
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